Search results for "Field of sets"

showing 3 items of 3 documents

On Rough Sets in Topological Boolean Algebras

1994

We have focused on rough sets in topological Boolean algebras. Our main ideas on rough sets are taken from concepts of Pawlak [4] and certain generalizations of his constructions which were offered by Wiweger [7]. One of the most important results of this note is a characterization of the rough sets determined by regular open and regular closed elements.

Discrete mathematicsInterior algebraRough setField of setsBoolean algebras canonically definedCharacterization (mathematics)Stone's representation theorem for Boolean algebrasTopologyComplete Boolean algebraMathematics
researchProduct

An extension of the algebra of sets

1973

We shall explain the aim which leads us in the construction of an extended system of the algebra of sets1. The symbol 1. {*:?(*)} denoting the set of these and only these elements of domain of the variable x which satisfy the propositional condition (propositional function or form) ?9 (x)" is in com? mon use nowadays, so that it is adopted in school courses of mathematics in many countries, and in Poland as well. This condition will be said to define the set 1. However, if we admit propositional conditions which are meaningless for some values of their variables then we encounter some difficulties connected with the ex? pression 1. The formulae 2. {x : 9 (*)} = {x : 9 (*)}' 3. {x : 9 (s) v …

Filtered algebraDiscrete mathematicsHistory and Philosophy of SciencePropositional functionQuaternion algebraLogicIncidence algebraAlgebra of setsTwo-element Boolean algebraNormal extensionField of setsMathematicsStudia Logica
researchProduct

Rough Set Algebras as Description Domains

2009

Study of the so called knowledge ordering of rough sets was initiated by V.W. Marek and M. Truszczynski at the end of 90-ies. Under this ordering, the rough sets of a fixed approximation space form a domain in which every set ↓ is a Boolean algebra. In the paper, an additional operation inversion on rough set domains is introduced and an abstract axiomatic description of obtained algebras of rough set is given. It is shown that the resulting class of algebras is essentially different from those traditional in rough set theory: it is not definable, for instance, in the class of regular double Stone algebras, and conversely.

Discrete mathematicsAlgebra and Number TheoryA domainSpace formInversion (discrete mathematics)Theoretical Computer ScienceInterior algebraComputational Theory and MathematicsRough setField of setsStone's representation theorem for Boolean algebrasAxiomInformation SystemsMathematicsFundamenta Informaticae
researchProduct